Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fine structure in magnetospectrum of vertical quantum dot

Identifieur interne : 006714 ( Main/Repository ); précédent : 006713; suivant : 006715

Fine structure in magnetospectrum of vertical quantum dot

Auteurs : RBID : Pascal:08-0316557

Descripteurs français

English descriptors

Abstract

The electronic transport properties of a gated vertical quantum dot fabricated of an asymmetrical InGaAs/AlGaAs double-barrier resonant tunneling heterostructure are studied experimentally. At a temperature of 15mK, a series of small current peaks are observed far below the voltage of a main resonance peak. The voltage position of these peaks appeared to be strongly dependent on the presence of magnetic field oriented perpendicular to the plane of the barriers. The occurrence of the peaks is attributed to tunneling mechanisms involving inter-Landau-level resonant tunneling, longitudinal-optical (LO)-phonon-assisted tunneling and to electrostatic effects such as Coulomb blockade.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0316557

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Fine structure in magnetospectrum of vertical quantum dot</title>
<author>
<name sortKey="Agafonov, Oleksiy B" uniqKey="Agafonov O">Oleksiy B. Agafonov</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstr. 2</s1>
<s2>30167 Hannover</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Hanovre</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kita, Tomohiro" uniqKey="Kita T">Tomohiro Kita</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Semiconductor Spintronics Project, ERA TO, JST</s1>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Semiconductor Spintronics Project, ERA TO, JST</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrial Communication, Tohoku University</s1>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrial Communication, Tohoku University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ohno, Hideo" uniqKey="Ohno H">Hideo Ohno</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Semiconductor Spintronics Project, ERA TO, JST</s1>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Semiconductor Spintronics Project, ERA TO, JST</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrial Communication, Tohoku University</s1>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrial Communication, Tohoku University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Haug, Rolf J" uniqKey="Haug R">Rolf J. Haug</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstr. 2</s1>
<s2>30167 Hannover</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Hanovre</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">08-0316557</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0316557 INIST</idno>
<idno type="RBID">Pascal:08-0316557</idno>
<idno type="wicri:Area/Main/Corpus">006827</idno>
<idno type="wicri:Area/Main/Repository">006714</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1386-9477</idno>
<title level="j" type="abbreviated">Physica ( E) low-dimens. syst. nanostrut.</title>
<title level="j" type="main">Physica. E, low-dimentional systems and nanostructures</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium arsenides</term>
<term>Coulomb blockade</term>
<term>Electronic structure</term>
<term>Field orientation</term>
<term>Fine structure</term>
<term>Gallium arsenides</term>
<term>Heterostructures</term>
<term>Indium arsenides</term>
<term>Landau levels</term>
<term>Magnetic field effects</term>
<term>Optical phonons</term>
<term>Quantum dots</term>
<term>Resonant states</term>
<term>Resonant tunnelling</term>
<term>Semiconductor materials</term>
<term>Transport processes</term>
<term>Tunnel effect</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Structure fine</term>
<term>Structure électronique</term>
<term>Phénomène transport</term>
<term>Effet tunnel résonnant</term>
<term>Effet champ magnétique</term>
<term>Orientation champ</term>
<term>Effet tunnel</term>
<term>Niveau Landau</term>
<term>Etat résonnant</term>
<term>Phonon optique</term>
<term>Blocage Coulomb</term>
<term>Point quantique</term>
<term>Arséniure d'indium</term>
<term>Arséniure de gallium</term>
<term>Arséniure d'aluminium</term>
<term>Hétérostructure</term>
<term>Semiconducteur</term>
<term>InGaAs</term>
<term>AlGaAs</term>
<term>8107T</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The electronic transport properties of a gated vertical quantum dot fabricated of an asymmetrical InGaAs/AlGaAs double-barrier resonant tunneling heterostructure are studied experimentally. At a temperature of 15mK, a series of small current peaks are observed far below the voltage of a main resonance peak. The voltage position of these peaks appeared to be strongly dependent on the presence of magnetic field oriented perpendicular to the plane of the barriers. The occurrence of the peaks is attributed to tunneling mechanisms involving inter-Landau-level resonant tunneling, longitudinal-optical (LO)-phonon-assisted tunneling and to electrostatic effects such as Coulomb blockade.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1386-9477</s0>
</fA01>
<fA03 i2="1">
<s0>Physica ( E) low-dimens. syst. nanostrut.</s0>
</fA03>
<fA05>
<s2>40</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Fine structure in magnetospectrum of vertical quantum dot</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Proceedings of the 17th International Conference on Electronic Properties of Two-Dimensional Systems (EP2DS-17)</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>AGAFONOV (Oleksiy B.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KITA (Tomohiro)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>OHNO (Hideo)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HAUG (Rolf J.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>GOLDONI (G.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SORBA (L.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstr. 2</s1>
<s2>30167 Hannover</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Semiconductor Spintronics Project, ERA TO, JST</s1>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrial Communication, Tohoku University</s1>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Dipartimento di Fisica & INFM-S3, Università di Modena e Reggio Emilia, Via Campi 213/A</s1>
<s2>41100 Modena</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>NEST CNR-INFM and Scuola Normale Superiore, Complesso polvani, Via Della Faggiola, 17/19</s1>
<s2>56126 Pisa</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>1630-1632</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>145E</s2>
<s5>354000173645982170</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>7 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0316557</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica. E, low-dimentional systems and nanostructures</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The electronic transport properties of a gated vertical quantum dot fabricated of an asymmetrical InGaAs/AlGaAs double-barrier resonant tunneling heterostructure are studied experimentally. At a temperature of 15mK, a series of small current peaks are observed far below the voltage of a main resonance peak. The voltage position of these peaks appeared to be strongly dependent on the presence of magnetic field oriented perpendicular to the plane of the barriers. The occurrence of the peaks is attributed to tunneling mechanisms involving inter-Landau-level resonant tunneling, longitudinal-optical (LO)-phonon-assisted tunneling and to electrostatic effects such as Coulomb blockade.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Structure fine</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Fine structure</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Structure électronique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Electronic structure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Phénomène transport</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Transport processes</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Effet tunnel résonnant</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Resonant tunnelling</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Effet champ magnétique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Magnetic field effects</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Orientation champ</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Field orientation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Orientacíon campo</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Effet tunnel</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Tunnel effect</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Niveau Landau</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Landau levels</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Etat résonnant</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Resonant states</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Phonon optique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Optical phonons</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Blocage Coulomb</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Coulomb blockade</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Arséniure d'aluminium</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Aluminium arsenides</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>19</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>20</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>20</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>AlGaAs</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>8107T</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fN21>
<s1>196</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Conference on Electronic Properties of Two-Dimensional Systems (EP2DS-17)</s1>
<s2>17</s2>
<s3>Genova ITA</s3>
<s4>2007-07-15</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006714 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 006714 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:08-0316557
   |texte=   Fine structure in magnetospectrum of vertical quantum dot
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024